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This paper deals with the theoretical and experimental investigation of acoustically
levitated droplets. A method of calculation of the acoustic radiation pressure based on
the boundary element method (BEM) is presented. It is applied to predict shapes of
droplets levitated in an acoustic field (and as a result, deformed by it). The method was
compared with several known exact and approximate analytical results for rigid
spheres and shown to be accurate (and a widely used approximate formula for the
acoustic levitation force acting on a rigid sphere was found to be inaccurate for sound
wavelengths comparable with the sphere radius). The method was also compared with
some other theoretical approaches known from the literature.

Displacement of the droplet centre relative to the pressure node is accounted for and
shown to be significant. The results for droplet shapes and displacements are compared
with experimental data, and the agreement is found to be rather good. Furthermore,
the experimental investigations reveal a unique relationship between the aspect ratio of
an oblate droplet and the sound pressure level in the levitator. This relationship agrees
well with the predicted shapes. A practical link between droplet shape or droplet
displacement and sound pressure level in a levitator is therefore now available.

1. Introduction

Calculations of drop shapes date back to the works of Rayleigh (1879) and Lamb
(Lamb 1959, §§275 and 355). Rayleigh gave a linearized solution for small oscillations
of an inviscid droplet about its unperturbed spherical shape, whereas Lamb accounted
for the effect of small viscosity. Further work on small oscillations of drops accounted
for the effects of an arbitrary viscosity (Reid 1960) and passive outer medium (Miller
& Scriven 1968; Marston 1980; Prosperetti 1980).

Nonlinear oscillations of inviscid irrotational free drops of moderate amplitude were
tackled by perturbation methods in Tsamopoulos & Brown (1983). Studies of arbitrary
nonlinear oscillations of drops involve sophisticated numerical methods: boundary
integral methods for inviscid irrotational drops (Lundgren & Mansour 1988; Pelekasis,
Tsamopoulos & Manolis 1991), and the finite element method for viscous ones
(Basaran 1992). Some approximate numerical models of nonlinear drop oscillations
were proposed in Becker, Hiller & Kowalewski (1991, 1994). For highly viscous liquids
(like those emerging in viscous sintering) the creeping flow approximation is valid. At
present the theories of linear and nonlinear droplet oscillations describe satisfactorily
most of the experimental findings of Marston & Apfel (1979, 1980), Trinh, Zwern &
Wang (1982), Trinh & Wang (1982), and Becker, Hiller & Kowalewski (1991, 1994).

Calculation of shapes of acoustically levitated droplets should account for the
detailed structure of the acoustic field around them. This field is governed by the wave
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equation (in the linear acoustic approximation). Therefore, calculation of the acoustic
field scattered from the drop is reduced to a solution of the Helmholtz equation. The
latter may be represented in the form of the boundary integral equation (Lamb 1959,
§290; Tikhonov & Samarskii 1990, Chapter 7, §2.2). Thus calculation of the scattered
field and the force imposed on a droplet by the acoustic field may be performed using
a numerical implementation of the boundary integral equation. In parallel, the steady-
state shape of the droplet or its evolution may be found by solving either ordinary
differential equations governing the force balance at the surface or the boundary
integral equation of the theory of potential (Jaswon & Symm 1977; Becker 1992) for
inviscid irrotational flow inside the droplet. Several examples of this approach have
already appeared in the literature. Lee, Anilkumar & Wang (1994) calculated the static
shape of a droplet located forcedly at the pressure node of a standing acoustic wave,
whereas Shi & Apfel (1995a, b) calculated small oscillations of an acoustically
deformed drop, as well as droplet squeezing in a strong acoustic field. Using artificial
damping of droplet oscillations, Shi & Apfel (1996) applied their method to predict
steady deformation and the position of acoustically levitated droplets. Their results
were published when the present work was in press. It is worth mentioning that several
approximate theories of steady droplet shapes in acoustic fields, valid in a restricted
aspect ratio range (not very large), have been published, e.g. Marston (1980) and Tian,
Holt & Apfel (1993).

The aim of the theoretical part of the present work is the prediction of steady-state
shapes of droplets levitated acoustically, and comparison of theoretical results with
experimental data. The theoretical work includes development of a novel method
based on the boundary integral equation, as well as a comparison of the whole droplet
shape and its displacement relative to the pressure node with experimental data. The
method directly solves a steady problem.

Experimental investigations of levitated droplets have been performed by Lierke
(1996), who gave an extensive overview on acoustic levitation and the effects of the
acoustic field on droplet physics. Also, Daidzic (1995) investigated several effects of
acoustically levitated droplets but, like Trinh & Wang (1982), mainly concentrated on
droplet oscillations. Trinh & Hsu (1986), Lee, Anilkumar & Wang (1991) and
Anilkumar, Lee & Wang (1993b) visualized the shapes of droplets deformed by the
acoustic field up to the point of droplet breakup. The bifurcation of rotating droplets
under microgravity condition was investigated by Anilkumar, Lee & Lin (1993a).

One major obstacle in analysing experimental results is knowing reliably the sound
pressure level (SPL) in the levitator. In principle, one could use a microphone;
however, the acoustic field is sensitive to such intrusions. Although the calibration of
the levitator is of central importance, few papers address this issue explicitly. They
mainly deal with sound pressure calibration using small solid spheres or droplets, like
for example in Apfel (1971) or in the dropout method also analysed in the present
work. However, the presence of a large squeezed drop results in a resonance shift
caused by scattering (Trinh & Hsu 1986), which makes results of sound pressure
calibration by small spheres or droplets inaccurate. The idea of using droplet
deformation to calibrate sound pressure was briefly mentioned in Tian et al. (1993), as
well as in Shi & Apfel (1996) where the measurement of the deformed shape of a small
drop was addressed. One aim of the present experimental work is, therefore, to
establish a means of estimating SPL for a given driving voltage of the levitator, a given
droplet size (even large) and fluid and a given resonator geometry. As a result, a
practical link between droplet deformation and SPL is established.

In §2 we describe the boundary integral method used to calculate the scattered
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acoustic field. In §3 we test this method against several known exact and approximate
analytical results for rigid spheres. In §4 we present the method used to calculate
steady-state droplet shapes in an acoustic field. The experimental set-up is outlined in
§5. Also in §5 the results of the calculations are presented and compared with
experimental data. This yields a link between driving voltage and SPL. Finally in §5
the results of the calculations are compared with experimental data of Trinh & Hsu
(1986) and several theoretical predictions taken from the literature. Conclusions are
given in §6.

2. Acoustic field

Acoustic levitators are typically assumed to operate in a regime close to ‘resonance’
when a standing sound wave of high (but finite) amplitude sets in. This happens when
an excitation frequency and eigenfrequency of a levitator become equal. Calculation of
the standing wave in a finite-length levitator based on a wave equation evidently yields
an infinite amplitude, since dissipative effects, such as viscosity and heat conduction,
are neglected. In reality, these effects make the amplitude finite. It is convenient to
assume the acoustic field to be a harmonic standing wave of some given amplitude,
which corresponds to a solution of the wave equation for an infinitely long levitator.
This approach was adopted, for example, in Lee et al. (1994) and Shi & Apfel (1995a).

Experiments of the present work show that droplets cannot be suspended if the
eigenfrequency of the levitator is equal to that of the ultrasound wave, since the
amplitude of the latter becomes so high that the droplets become unstable and oscillate.
In the present set-up that leads to a rapid droplet shatter. However, by detuning the
levitator by varying the reflector distance L

r
, a standing wave of lower, but still high

enough, amplitude for droplet levitation is obtained. The incident ultrasound wave in
the levitator is assumed to be one-dimensional and satisfies the one-dimensional wave
equation with appropriate boundary conditions at the source of the sound (x¯ 0) and
the reflector (x¯L

r
) :
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where p!
i
is the pressure perturbation in the incident wave, A

!
is its amplitude at the

source (piezocrystal) surface, ω is its angular frequency (corresponding to the
ultrasonic range), c

!
is the sound velocity in air, i is the imaginary unity, t is time, and

x is the longitudinal (vertical) coordinate.
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as well as three maxima and minima at

x¯L
r
®

c
!

ω
πn (2.4)

with n¯ 1, 3, 5 and n¯ 0, 2, 4, respectively. Note that in the present experiment,
droplets were levitated near the third node corresponding to n¯ 2 in (2.3).

Similar to Lee et al. (1994) and Shi & Apfel (1995a) we approximate the incident
wave (2.2) by a standing wave corresponding to an infinite levitator:
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where A
!e

is an effective amplitude, x¯ z­L, z is the vertical coordinate where z¯ 0
may be considered to be the position of the centre of an imaginary (or real) levitated
rigid sphere, and L is the displacement of the centre of this sphere (or the origin of the
z-axis) relative to the pressure antinode (see figure 1).

To make the approximation (2.5) consistent with (2.2) we need to require the
maxima of p!

i
to be identical in both the cases, which yields
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Under the conditions of the present experiment cos(ωL
r
}c

!
)¯®0±660 (for L

r
¯

1±6 cm).
The approximation (2.5) and (2.6) yields the amplitude of the sound wave and the

number of pressure nodes in 0%x%L
r

identical with those of (2.2). The displace-
ment of a pressure node given by (2.5) and (2.6) relative to that of (2.2) is about 5%
(∆x}L

r
E 0±05). In the following we mimic the incident standing wave by (2.5)

with the amplitude A
!e

related to that of the sound source A
!

by (2.6).
When a droplet (or a rigid particle) is located in the levitator, a scattered acoustic

field appears in addition to the incident one (2.5) :
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where function p
s
of the radius-vector r is to be found from the Helmholtz equation:

∆p
s
­0ωc

!

1# p
s
¯ 0. (2.8)

The effect of the acoustic wave inside the droplet on the shape of the droplet is
negligibly small, since fluids of interest have much larger values of acoustic impedance
than that of air. Therefore, equation (2.8) is supplemented by the boundary condition
expressing the fact that droplets (like rigid particles) are practically impenetrable by
sound waves : n[¡(p!

i
­p!

s
)¯ 0 at the surface, where n is the unit vector of the outer

normal to the surface. This yields the following boundary condition at the surface :
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In the case of droplet levitation in a liquid (which is not the aim of the present work)
the boundary condition (2.9) should be modified to account for the sound field inside
the droplet, e.g. as in Tian et al. (1993). Far from the droplet (or particle) the scattered
field is supposed to be vanishing:

p
s
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Solutions of equation (2.8) with boundary conditions (2.9) and (2.10) may be found
from the following boundary integral equation (Lamb 1959, §290; Tikhonov &
Samarskii 1990, Chap. 7, §2.2) :
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(the Fredholm equation of the second kind).
The integrals in (2.11) are evaluated over the droplet (or particle) surface S. P is a

point at the surface where p
s
is calculated, whereas Q is any point at the surface. The

distance between these points is denoted by r
PQ

; the element of area is dσ
Q
.

In the present paper we assume that droplets have only axisymmetric shapes. This
assumption is supported by the experimental evidence shown in figure 6 below. For
axisymmetric droplets (or particles) equation (2.11) may be rearranged to the following
system of boundary integral equations used to find the real and imaginary parts of the
scattered wave p
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and p
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The kernel functions G
i
, H

i
and M

i
(i¯ 1, 2) are given in the Appendix. In equations

(2.12) the integrals are evaluated using an arbitrary parameter of a half-loop of the
drop generatrix, s. When applying the boundary element method (BEM) and
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discretizing (2.12) on the boundary elements, we take s rendered dismensionless by the
unperturbed drop (or particle) radius a

!
. Also s varies from s¯®1 to s¯ 1 along an

element in the direction from the droplet top to the bottom. Discretization of (2.12)
and numerical evaluation of the integrals involved is similar to the procedure described
by Becker (1992). The resulting system of algebraic equations

B[9psr

p
si

:¯D (2.13)

is solved by the Gaussian elimination technique. As a result, the column of nodal
values of p

sr
and p

si
is found for known matrices B and D.

The total pressure perturbation at the droplet (or particle) surface is given by the
sum
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where p!
i
and p!

s
are taken at the surface.

The acoustic radiation pressure is given by (Landau & Lifshitz 1959, §64)
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where the acoustic gas velocity is
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and © ª denotes time averaging over a period long enough compared with the wave
cycle, and ρ

!
is the unperturbed air density.

Using (2.5), (2.7) and (2.14)–(2.16) we arrive at the acoustic radiation pressure
produced by the standing wave at the drop (or particle) surface,
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where p
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and p
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at the surface are found from (2.13), and the generatrix stretch is
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Note that r and z are radial and axial coordinates of a point on the droplet (or
particle) generatrix. The overall acoustic force acting on an axisymmetric droplet (or
particle) is equal to
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which yields the acoustic levitation force in the form
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is given by (2.17).
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3. Test cases for the acoustic scattering and levitation force calculations

King (1934) solved two important problems of the theory of acoustic scattering,
which may be readily used for testing the numerical approach outlined in §2, as well
as for a rough estimate of the spatial distribution of the acoustic levitation force acting
on a droplet.

In the first example of King (1934) a travelling acoustic pressure wave

p!
i
¯A

!e
eik(z−c! t) (3.1)

(k is the wavenumber, k¯ω}c
!
) is scattered from an immovable rigid sphere of radius

a
!

with the centre at z¯ 0. His solution for this case is also given in Morse (1948,
p. 354) and Tikhonov & Samarskii (1990, Chap. 7, §4.3).

Note that in the numerical calculation of scattering of the travelling wave (3.1) from
a sphere (to compare the results with the above analytical solution), only the non-
dimensional functions M

"
and M

#
in the Appendix should be changed. They become

as follows:
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(cf. (A 4e, f )). All the other functions obtained previously for a standing wave remain
unchanged.

The results of the calculation of the scattered acoustic field based on the analytical
solution of King (1934) were compared with the present numerical results and found
to be practically indistinguishable.

The second example given by King (1934) includes calculation of the acoustic
levitation force F

L
acting on a rigid immovable sphere located in the incident wave

(2.5). His analytical result is given by
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where j
m

and n
m

are the spherical Bessel and Neumann functions respectively, and L
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L F
L
, numerical

F
L
, by (3.3)

with (3.4b)
F
L
, by (3.3)

with (3.6)

0 ®0±0096 0 0
0±1 0±2737 0±2840 0±3397

"

%
π¯ 0±785 1±4148 1±4294 1±7098

1 1±2849 1±2998 1±5547
1±55 0±0466 0±0594 0±0711

T 1. The values of the acoustic levitation force acting on a rigid immovable sphere obtained
numerically, and by means of the exact – (3.3) with (3.4b) – and approximate – (3.3) with (3.6) –
analytic results. F
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in (3.3) is rendered dimensionless by a
!
. Note that according to figure 1, displacement

of a rigid sphere from the pressure node rendered dimensionless by a
!
, is D¯

π}2Ω®L. Therefore, sin(2ΩL)¯ sin(2ΩD) in (3.3).
It is emphasized that the result of King (1934) (3.3)–(3.5) is valid for an arbitrary

value of Ω including Ω¯O(1). King (1934) also obtained a simple asymptotic form of
(3.3)–(3.5), valid only for Ω' 1, which is not considered in the present paper.

An approximate expression for the acoustic levitation force imposed on a rigid
immovable sphere by relatively long ultrasonic waves (Ω¯ka

!
' 1) was proposed in

Leung, Jacobi & Wang (1981), Lierke et al. (1983) and Lierke (1996). It is given by
(3.3) with
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In table 1 we compare the results obtained numerically by means of (2.13), (2.17) and
(2.20) (with 51 nodal points on a half-loop of the generatrix) with those given by (3.3)
with (3.4b), and (3.3) with (3.6) for A

!e
}ρ

!
c#
!
¯ 1 and Ω¯ 1. The displacement of the

sphere centre relative to the pressure antinode was varied. It is seen that for the acoustic
wave of an intermediate length corresponding to Ω¯ 1, in the most important range
of L from π}4 (where F

L
has a maximum according to (3.3)) to 1, the numerical result

differs from the exact one, (3.3) with (3.4b), by 1%. The approximate result (3.3) with
(3.6) differs from the exact one by 16–19±6%.

The results of the comparison allow us to expect that the numerical calculation of
the acoustic levitation force is accurate enough to use this method in the case of non-
spherical droplets deformed by the acoustic field also.

4. Steady-state shapes of acoustically levitated droplets

Steady suspension of a droplet in a standing acoustic wave results from an
equilibrium of the acoustic levitation and gravity forces :
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The integral is evaluated over a half-loop of the generatrix, the unperturbed drop
radius is denoted a

!
, liquid density is ρ

l
, and gravity acceleration is g. The acoustic

radiation pressure p
a

is given by (2.17), and depends on the droplet shape and L.
Against the background of the overall force equilibrium (4.1), a pointwise

equilibrium of the acoustic, capillary and hydrostatic pressures may be achieved at the
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F 2. Sketch of a squeezed droplet. The tangent slope shown is negative (θ! 0).

droplet surface, resulting in a steady-state shape. The fluid pressure at the droplet
surface is given by

p¯ p
!
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a
®αK, (4.2)

where p
!
is an unperturbed air pressure, α is the surface tension coefficient, and K is the

surface curvature (negative at a convex surface and positive at a concave one).
Using (4.2) we get from the Bernoulli equation at the droplet surface
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Defining a tangent slope to the generatrix θ and the arclength from the top ξ (see
figure 2) we get the curvature in the following form:
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r
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. (4.6)

Using (4.6) we obtain from (4.4) and simple geometrical considerations the following
equations used to calculate the droplet shape:
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It is easy to see that as ξ tends to zero, θ is proportional to ξ, r¯ ξ and z¯ z
T
, where

z
T

is a coordinate of the droplet top. Therefore, the boundary condition allowing one
to avoid the singularity at the top, is posed at some small ξ

!
:

ξ¯ ξ
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: θ¯Mξ
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, r¯ ξ
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, z¯ z
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, (4.8a–c)
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where p
aT

is a value of the acoustic radiation pressure at the top.
The value of C in (4.7a) is found by shooting with the goal of satisfying the condition

that at some ξ¯ ξ
B

where θ¯®π, it should also be the case that

r¯ 0. (4.10)

When this condition is reached, ξ
B

is identified as an arclength of the half-loop of the
droplet generatrix. The shooting method employed in the present work to solve
equations (4.7) is close to that of Goldshtik, Khanin & Ligai (1986) where it was
proven to be highly effective and flexible in calculations of shapes of droplets levitated
by air blowing or due to evaporation above a hot plate (Leidenfrost effect).

The whole algorithm works via iterations as follows.
(i) First we suppose an arbitrary droplet shape defined as functions r(s) and z(s).
(ii) Then we calculate the corresponding volume as

V¯& zT

zB

πr#dz, (4.11)

where z
T

and z
B

are the coordinates of the top and bottom. Using (4.11) we can
calculate the factor ζ :

ζ¯ 04πa$

!

3V 1"/$. (4.12)

Given r(s) and z(s) and multiplying them by this factor, we adjust the droplet volume
to that of the unperturbed drop (without changing a shape of the former). Note, that
the present stage yields a trivial result ζ¯ 1 for an initial guess in the form of a
spherical droplet of radius a

!
used in the calculations.

(iii) Then we suppose a value of the displacement of a coordinate system associated
with the centre of an imaginary rigid sphere, L (see figure 1), and calculate the
distribution of the acoustic radiation pressure p

a
at the droplet surface from (2.13) and

(2.17). Then iterating L we try to satisfy the overall force balance (4.1) for the drop,
which in the non-dimensional form is written as

®&Bottom

Top

p
a

¥r
¥s

rds¯
2

3

Bo

We
a

. (4.13)

Note that the displacement of a drop relative to the pressure antinode is evidently
distinct from L : a real droplet may be also displaced relative to the probe imaginary
rigid sphere. Droplet displacement relative to the pressure node (and antinode) is
discussed below (see (4.14)).

The range of L, 0#L#π}2Ω (rendered dimensionless by a
!
) where the acoustic

levitation force F
L

is expected to be positive, is the only one where the iterations in L
may converge in the case when droplet suspension may be possible. However, there is
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F 3. The overall force balance. Curve 1 is the acoustic levitation force; vertical lines 2 and 2«
are two different values of the gravity force. An imaginary rigid sphere S is also shown. The origin
of the z-axis is associated with its centre. Point A is the pressure node.

a case when it is, in principle, impossible (see figure 3). When the droplet weight is
larger than the maximum of F

L
(see vertical line 2« in figure 3), there cannot be any

solution. The droplet is too heavy and acoustic levitation is impossible. The case of
interest in the present work is the one where the droplet weight is smaller than the
maximum of F

L
(vertical line 2 in figure 3), and there are two intersection points D and

E on curves 1 and 2 in figure 3. It is known and easy to see that point D corresponds
to a stable equilibrium, and point E to an unstable one. Thus, the value of L satisfying
the overall force balance (4.1) should be taken in the range π}4Ω#L#π}2Ω
corresponding to point D in figure 3 (π}4Ω approximately corresponds to the
maximum of the acoustic levitation force).

(iv) Given L, we find, as a result, the acoustic pressure distribution p
a

over a
supposed droplet shape, which also satisfies the overall force balance (4.13). Therefore,
using this p

a
we solve (4.7) with the conditions (4.8) and (4.9). In the present work,

system (4.7) was integrated numerically by the Kutta–Merson method. Iterating C to
satisfy (4.10) also, we find a new shape of the droplet. If it differs from the previous one
more than allowed by a prescribed accuracy, the algorithm is applied once more,
beginning from (ii).

When the iterations converge, we get a final droplet shape, as well as the acoustic
pressure distribution on its surface p

a
satisfying all the required conditions: (4.10),

mass conservation condition, and the overall force balance (4.13).
Note that in (i) we use an initial guess of a droplet shape in the form of a sphere with

the top at z¯ 1 (non-dimensional). Thus, in the first iteration z
T

¯ 1 in (4.8c). As a
result, the droplet top in the subsequent iterations is also located at z¯ 1. It is easy to
see that in all the subsequent iterations we can always use the same value of z

T
¯ 1,

which does not affect the results.
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Let the centre of the median cross-section of a droplet be below its top by a distance
∆ along (z­L)-axis. Then the displacement of the centre from the pressure node, D, is
given by

D¯®9 π

2Ω
®(L­1):®∆ (4.14)

(for z
T

3 1). Note, that if ∆ is a displacement of the centre of gravity of the droplet
relative to its top (which is certainly distinct from the centre of the median cross-
section), then (4.14) yields the displacement of the centre of gravity relative to the
pressure node.

5. Results for steady-state droplet shapes: comparison with experiment
and discussion

The levitator used in this study was supplied by Battelle-Frankfurt and is shown in
figure 4. The acoustic wave is generated by a piezo crystal operated at a frequency of
56 kHz. The reflector is adjustable and was positioned to allow five nodes of a standing
wave. The droplets were suspended in node three from the piezo transducer. The piezo
transducer was 12 mm in diameter with a 2 mm central hole, used in a parallel study
to produce a jet flow (Keller et al. 1995). The reflector was plane and 12 mm in
diameter. No attempt was made to measure the divergence of the acoustic field and in
all of our work a plane field was assumed. Further information on possible deviations
from this assumption may be found in Lierke (1996).

To illuminate the droplet, a white light source was placed behind a white semi-
opaque screen, positioned opposite a CCD camera. The camera was connected to the
computer via a frame grabber interface. Software was available for processing of the
digital images (Optimas). The experimental data obtained in the course of the present
work are new.

It was not possible to monitor the droplet shape from the vertical direction to
estimate deformations from the axisymmetric shape directly. Experimental data shown
in figure 6 suggest, however, than in any case such a deformation should be very small
compared to the drop size. It should be also mentioned that there are no self-sustained
forces exciting non-axisymmetry and certainly we did not observe any corresponding
oscillations on the screen.

We did not use a small microphone to measure the sound pressure. The reason for
this is that most other studies which do use microphones involve considerably longer
wavelengths, and thus larger dimensions. In the present levitator measurement with a
microphone is not easy to do without disturbing the field.

With the goal of comparison with the experiment, all the corresponding calculations
were made for droplets of n-hexadecane C

"'
H

$%
possessing the following physical

parameters : ρ
l
¯ 0±7734 g cm−$, α¯ 27±64 g s−#. The density and sound velocity of air

were taken as ρ
!
¯ 1±18¬10−$ g cm−$ and c

!
¯ 3±4¬10% cm s−", respectively.

For a given decibel level (dB
e
), the amplitude of the pressure wave (2±5), A

!e
, may

be found from the equation (Morse 1948, p. 226)

dB
e
¯ 20 log

"!
(A

!e
)­74, (5.1)

where A
!e

is in dyne cm−#, whereas from (2.6) the sound level in decibel, dB,
corresponding to the amplitude at the sound source, A

!
, is related to dB

e
as

dB¯dB
e
­20 log

"!
[®cos(ωL

r
}c

!
)]. (5.2)



On the acoustic le�itation of droplets 77

Micrometer
screw

Semi-opaque
screen

White
light source

Oscillating
plate

Piezo
crystal PC

Droplet

Reflector

CCD camera

F 4. Schematic picture of the experimental set-up with the acoustic levitator and the
imaging system for the determination of the droplet shape.

Under the conditions of the present experiment 20 log
"!

[®cos(ωL
r
}c

!
)]¯®3±61 for

L
r
¯ 1±6 cm.
Note that the definition of the sound pressure level (SPL) in decibel is based, as a

rule, on the root-mean-square pressure amplitude p
rms

(Morse 1948, p. 226). For a
plane travelling wave p

rms
¯A

!e
}o2, which yields a value of SPL lower than that of

(5.1) and (5.2) by 3±01 decibel. For standing waves, we prefer to use the definition of
(5.1).

Some insight into the link between the sound pressure level (SPL) and the driving
voltage may be achieved by investigating a droplet levitated in the acoustic field
without accounting for the droplet deformation from the spherical shape.

For a levitated sphere, the acoustic force has to compensate exactly the gravitational
force. Equating King’s (1934) force given by (3.3) with the droplet weight, we arrive at
the following expression for A

!e
:

A#

!e
¯

4

3

a
!
ρ
l
ρ
!
gc#

!

f
King

(Ω) sin(2ΩL)
, (5.3)

where L is rendered dimensionless by a
!
.

In the case when a spherical particle is levitated, a slow decrease in the driving
voltage (at fixed reflector distance L

r
) towards the minimum levitating voltage will lead

to the positioning of the particle’s centre at

L¯π}4Ω (5.4)

(see figure 3). A further decrease of the driving voltage results in the dropout of the
sphere because the acoustic force can no longer compensate the gravitational force. By
inserting (5.4) into (5.3) the amplitude of the sound wave at the point of dropout can
be calculated:

A#

!em
¯

4

3

a
!
ρ
l
ρ
!
gc#

!

f
King

(Ω)
. (5.5)

This expression, together with (5.1) and (5.2) provides a means to experimentally
determine the sound pressure level at the dropout condition for spheres.
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(the ratio of the driving voltage U
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and the amplitude of the pressure wave A
!em

at
the point of dropout) for water and n-hexadecane droplets as a function of the droplet volume. The
lines are linear interpolations.

The oscillation amplitude of the piezo transducer, which serves as the ultrasound
source in the levitator, is assumed to be linearly proportional to the driving voltage
applied to it. Neglecting nonlinear acoustic effects, which should be valid at the sound
pressure levels used, one can also expect that the amplitude of the wave is linearly
proportional to the oscillation amplitude of the transducer. Therefore the sound
amplitude and driving voltage under the conditions of droplet levitation (A

!e
,U

!
) and

dropout (A
!em

,U
!m

) are related as follows:

A
!e

¯A
!em

U
!
}U

!m
. (5.6)

It should be mentioned that the formulae (3.3), (3.4b) and (5.5) are valid only for
spheres. The droplets however were slightly deformed, even at the moment of dropout.
The effect of droplet deformation can be investigated by comparing the dropout sound
pressure level for droplets of different surface tensions. For this purpose the dropout
of water droplets, in addition to the n-hexadecane droplets, was investigated. Equation
(5.6) predicts that the ratio of the sound wave amplitude A

!e
to the driving voltage

amplitude U
!

is constant:

U
!

A
!e

¯
U

!m

A
!em

¯C
"
. (5.7)

Substituting (5.5) yields

U
!m 034

f
King

(Ω)

a
!
ρ
l
ρ
!
gc#

!

1"/#¯C
"
, (5.8)

where C
"

on the right-hand side of (5.8) has to be constant for different fluids and
droplet volumes, assuming no droplet deformation.

The left-hand side of (5.8) is plotted for different droplet volumes in figure 5 for both
n-hexadecane and water. U

!m
, the voltage at dropout, was found as the mean value of

repeated readings for five identical droplets. The lines in figure 5 are linear
interpolations of the experimental data. For water droplets, the variation of C

"
is

marginal over the range of droplet volumes investigated, corresponding to a change of
the acoustic field amplitude A

!e
of 1±75%, or 0±15 dB

e
. The n-hexadecane droplets
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F 6. Droplet shapes: theory vs. experiment. Theoretical results are shown by curves,
experimental data by symbols with details listed in table 2. (a) Experiment No. 1: Bo¯ 0±3086,
We

a
¯ 5235±15, Ω¯ 1±0978, A

!e
}ρ

!
c#
!
¯ 0±0150. (b) Experiment No. 2: Bo¯ 0±3086, We

a
¯ 5235±15,

Ω¯ 1±0978, A
!e
}ρ

!
c#
!
¯ 0±0175. (c) Experiment No. 3: Bo¯ 0±3086, We

a
¯ 5235±15, Ω¯ 1±0978,

A
!e
}ρ

!
c#
!
¯ 0±0189. (d ) Experiment No. 4: Bo¯ 0±2195, We

a
¯ 4415±49, Ω¯ 0±9259, A

!e
}ρ

!
c#
!
¯

0±0150. (e) Experiment No. 5: Bo¯ 0±2659, We
a
¯ 4859±88, Ω¯ 1±0191, A

!e
}ρ

!
c#
!
¯ 0±0150. The

origin of the coordinates is at the pressure node (y¯ 0 in the present figure corresponds to z­L¯
π}2Ω in figure 3).
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Experiment
no.

Voltage
(V)

Drop
volume

(µl)
a
!

(µm)

Displacement,
theory}exp.
(µm}µm)

Aspect ratio,
theory}exp.

1 156 5 1061 ®335±33}®340 1±3530}1±3530
2 197 5 1061 ®194±77}®141 1±7120}1±7131
3 238 5 1061 ®138±86}®52 2±1507}2±1504
4 156 3 895 ®276±13}®328 1±2837}1±3071
5 156 4 985 ®300±26}®337 1±3277}1±3530

T 2. Displacements of the median cross-section and aspect ratios : theory vs. experiment.
Uncertainty in drop volume ³1%, in cross-section and displacement ³40 µm and in aspect ratios
³3%.

exhibit a higher variation of C
"
(7±5%, or 0±6 dB

e
), which can also be expected, due to

the larger deformations resulting from the lower surface tension.
There exist some experimental uncertainties in the measurements presented in figure

5. The droplets were injected into the levitator using a precision syringe, with an
estimated uncertainty in the droplet volume of ³1%. Effects of evaporation are
considered to be negligible for the period of time required to perform the dropout
experiment. The value of c

!
, however, undergoes small variations with temperature and

humidity, estimated to be of the order of ³1% for typical room value fluctuations
(³5 °C, ³20% RH). No conclusive information is available about the variation of
surface tension of the distilled water and n-hexadecane used, especially with respect to
impurities, since only spot check measurements were performed. The surface tension
will enter the measurements of figure 5 through the degree of deformation of the
droplet.

Some variations of C
"
are observed from day to day; however, if experiments with

water and n-hexadecane are performed immediately after one another, the value C
"
for

water will always be larger, typically 1–7% for a 5 µl droplet. The higher surface
tension of water and hence the weaker deformation (lower aspect ratio) at the same
SPL, together with figure 5, is a first indication that King’s formula overestimates the
SPL if it is applied to deformed droplets.

Next the aspect ratio and the displacement of droplets are determined by evaluating
digital pictures taken with the CCD camera and using the image processing software.
The link between the aspect ratio and A

!e
is investigated for several reflector distances.

Daidzic (1995) has already investigated the dependence of the aspect ratio on what he
called the acoustic power for one reflector distance. In fact this power is an arbitrary
electric power which is more or less proportional to the electric power applied to the
piezo crystal. Daidzic did not determine A

!e
explicitly, nor did he find its influence on

the aspect ratio.
The experimental results obtained by the CCD camera and software are shown in

figure 6 (with symbols) and tables 2 and 3. The measurement of absolute displacement
using the CCD camera requires a calibration, which leads to uncertainties of ³40 µm.
These uncertainties become significant, especially for smaller displacements. However,
the measurement of the aspect ratio does not rely on a calibration and is limited in its
accuracy only by the image resolution. An overall accuracy of the measured aspect
ratio of ³3% has been estimated. It is emphasized that droplet shape and displacement
are both a strong function of the acoustic pressure as is seen from table 2 (also curve
1 in figure 9).

By means of the numerical algorithm outlined in §2 and §4, we first made
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Voltage (V) Aspect ratio

156 1±3530
197 1±7131
238 2±1504

T 3. Aspect ratio vs. driving voltage for a 5 µl droplet obtained in the experiment.
Uncertainty of measured aspect ratio ³3%.

Voltage (V) dB
e

dB
resulting from the

calibration

dB
found experimentally
by another method
for the same set-up
(Keller et al. 1995)

156 160±247 156±64 156±78
197 161±573 157±96 157±98
238 162±241 158±63 158±27

T 4. Voltage–decibel link; L
r
¯ 1±6 cm.

calculations for a n-hexadecane 5 µl volume droplet for different sound levels. In the
steady state, the droplet cross-section was squeezed by the acoustic field and became
oblate. These calculations resulted in a theoretical dependence of the aspect ratio of the
squeezed cross-section on decibel level dB

e
(SPL). This dependence is shown by curve

1 in figure 9. It was used for calibration of the levitator together with data for the aspect
ratio of a 5 µl droplet found in the experiment for different values of driving voltage
(shown in table 3). Using the data shown by curve 1 in figure 9, via linear interpolation,
we found dB

e
-levels corresponding to the experimental aspect ratios of table 3. Thus,

a link was established between the driving voltage and dB
e
, as well as the dB level (see

(5.2)), presented in table 4. The experimental data of table 4 were found independently
by Keller et al. (1995) using another method and will be published in detail elsewhere.
Note briefly that Keller et al. (1995) calibrated the SPL of the levitator by a direct
measurement of the displacement velocity amplitude in the sound wave, as well as via
the mean velocity variation along the levitator axis when a laminar submerged gas jet
was issued axially. The accuracy of the method of Keller et al. (1995) was estimated as
³0±43 dB. Note also that Keller et al. (1995) defined SPL as in (5.1) and (5.2). It is seen
that the results of the present calibration method agree with those of Keller et al. (1995)
(cf. the third and the fourth columns in table 4). The accuracy of the present method
is estimated as ³0±09 dB.

The good agreement between the theory and experiment shown in table 4 for
L

r
¯ 1±6 cm deserves some more comments. In the experiment of Keller et al. (1995) the

accuracy of measurements of reflector distance L
r
was not high enough to distinguish

the second decimal digit. The value of dB from (5.2) is, however, highly sensitive to the
value of L

r
. For example, for L

r
¯ 1±605 cm and L

r
¯ 1±61 cm calculated values of dB

will differ from those of table 4 by 0±53 dB and 1±136 dB, respectively.
The voltage–decibel link found for a 5 µl droplet will be used henceforth without any

change in numerical calculations of shapes and displacements of 3, 4 and 5 µl n-
hexadecane droplets.

We compared droplet shapes calculated numerically and found experimentally. We
also compared the corresponding displacements of the centre of the droplet median
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cross-section. The results are shown in figure 6 and table 2. The origin of the
coordinates in figure 6 is located at the pressure node. Thus, y¯ 0 in figure 6
corresponds to z­L¯π}2Ω in figure 3.

A similar comparison was done by Tian et al. (1993) for a water drop of aspect ratio
less than about 1±55. (They also made calculations for several other fluids.) It showed
that their approximate theory is valid in this range of aspect ratios. Comparison of the
aspect ratios with experimental data for relatively small values of Ω (without
considering the whole droplet shape and displacement) showed that for some other
fluids the agreement of the theoretical results of Tian et al. (1993) might be good at
aspect ratios close to 2. Regarding a comparison for droplets of silicon oil in the latter
work, Shi & Apfel (1996) commented that ‘ the computations…grow too fast as the
sound pressure increases ’.

The main difference between the method of Tian et al. (1993) and the present one is
in the numerical calculation of the scattered acoustic field, as well as in the calculation
of the squeezed droplet shape. The scattered field in Tian et al. (1993) was represented
by a series in spherical functions, which was truncated at the third term. They also
fitted the droplet shape by a nonlinear least-squares fitting.

The present method directly calculates the radiation pressure at the nodal points on
the droplet surface, as well as numerically solving the differential equations governing
droplet shape. The accuracy of the present method smoothly increases with the number
of nodal points. Note that the results of figure 6 were obtained with N¯ 51 nodal
points per half-loop of the generatrix used in the calculation of the acoustic radiation
pressure by the BEM. Preliminary calculations with 31 and 101 nodal points showed
that N¯ 51 is a reasonable compromise between accuracy and time consumption.

The voltage–decibel link, once established (refer to table 4), was used without any
fitting to calculate droplet shapes and displacements from the pressure node. The
theoretical droplet shapes are plotted in figure 6 by curves together with the
experimental data taken by the CCD camera with Optimas software and shown by
symbols.

The present experimental data for n-hexadecane drops include aspect ratios up to
2±15; the data are compared with the theory valid for any aspect ratio which may be
achieved in a steady state.

The results shown in figure 6 and table 2 allow us to conclude that the theory
reproduces rather accurately the droplet shapes, including the aspect ratios. The
agreement for the displacement is somewhat poorer, as especially seen in figure 6(b, c)
and from the corresponding data in table 2. It should be mentioned, however, that the
experimental data plotted by symbols in figure 6 show some lateral asymmetry relative
to the vertical axis x¯ 0 (the theoretical results shown by curves in this figure are
totally symmetric, and may be used to detect deviations from the symmetry in the
experimental data). The scale of these asymmetries is of the order of the disagreement
between the theoretical and experimental data for the displacement present in table 2.
Therefore, most of the discrepancies between the theoretical and experimental data for
the centre displacement may be attributed to the inaccuracy in measurement of droplet
location. The overall droplet shape is not sensitive to these discrepancies and continues
to be very close in the theory and experiment, as follows from figure 6. It is emphasized
that droplet shape and displacement are both a strong function of the acoustic pressure
as is seen from table 2 (also see curve 1 in figure 9).

Small lateral asymmetries of the experimental data in figure 6 relative to x¯ 0 may
be partly attributed to a radial distribution of the acoustic field tending to stabilize
droplets at the levitator axis, which does not preclude, however, small oscillations of
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F 7. Comparison of the present theory with the experimental data of Trinh & Hsu (1986) and
some other theoretical methods. Symbols : the data of Trinh & Hsu (1986) for silicone oil droplets
(ρ¯ 0±95 g cm−$, α¯ 20 g s−#). (a) a

!
¯ 0±045 cm, Ω¯ 0±16; (b) a

!
¯ 0±07 cm, Ω¯ 0±25. The error

bars of the experimental data for the aspect ratio are not less than about 0±1. Curves show the
predictions of theory: curve 1, Marston (1980) ; 2, Shi & Apfel (1996) ; 3, Tian et al. (1993) ; 4, the
present work.

the droplet position due to its inertia. Some instantaneous random air currents or table
vibrations also could not be eliminated totally. As a result, small oscillations of droplet
position might be caught on a snapshot.

The fact that measured and predicted droplet contours in figure 6 may be
superimposed perfectly by small shifts in horizontal and vertical directions (without
any shape modifications) also supports the assumption that small, almost in-
stantaneous, variations of droplet position could be attributed to the above-mentioned
factors. If any sustained non-axisymmetry were involved that would not be the case.

We also compared our theoretical method with the experimental data of Trinh &
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F 8. Acoustic radiation pressure distribution calculated for experiment No. 1 from table 2.
The highest z corresponds to the top of the droplet, the lowest to the bottom.

Hsu (1986), approximate theories of Marston (1980) and Tian et al. (1993), as well as
with recent numerical results of Shi & Apfel (1996). The results for two droplets of
silicone oil are presented in figure 7. It is seen that the methods of the present work and
of Shi & Apfel (1996) yield rather close results in the whole range of variation of the
acoustic pressure (measured by a probe microphone) and fit experimental data
sufficiently accurately. The analytical results significantly underestimate the ex-
perimental data, whereas the approximate computations overestimate them.

Anilkumar et al. (1993b) in their figure 9 presented experimental data for the critical
values of the acoustic Bond number B

a
and critical non-dimensional equatorial radius

b}a
!
corresponding to disappearance of a steady simple oblate shape of water droplets.

The Bond number Bo given by (4.5b) calculated for their experimental data varies from
0±14 to 0±46 which is close enough to the range of Bo in the present work (0±22–0±31,
as is seen in the caption to figure 6). Therefore it is worth comparing their experimental
results with the theoretical predictions for one of our cases which is rather close to
the disappearance of the steady simple oblate shape (given by figure 6c). In our
notation B

a
¯ (A

!e
}ρ

!
c#
!
)#We

a
. Therefore B

a
¯ 1±87 and b}a

!
¯ 1±666 for our figure

6(c) corresponding to Ω¯ 1±0978 (the value of b}a
!
is found from the aspect ratio b}a

as (b}a)#/$ like for a spheroid). The data of figure 9 of Anilkumar et al. (1993b) extend
only up to Ω¯ 0±74. A reasonable extrapolation of their results to Ω¯ 1±0978 shows
good agreement with our values of B

a
¯ 1±87 and b}a

!
¯ 1±666.

From table 2 it is seen that the displacement D is approximately 10–30% of the
unperturbed droplet radius a

!
. The computations of the present work show that in the

experiments of Trinh & Hsu (1986) the displacements D sometimes constitute more
than 150% of the unperturbed droplet radius. Therefore, in the given case the
displacement definitely cannot be ignored, as was assumed in Lee et al. (1994).

A distribution of the acoustic radiation pressure over a half-loop of the generatrix
is plotted in figure 8 against z-values corresponding to the points along the generatrix.
It is seen that the droplet top (near z¯ 0±5) and bottom (near z¯®1±2) are
compressed (p

a
" 0), whereas the equatorial part ®0±7# z# 0±3 is stressed (p

a
! 0)

by the acoustic radiation pressure. Asymmetry relative to the equator evidently arises
due to droplet displacement relative to the pressure node.

Note that the normalized lengths of the half-loop of the generatrix of the droplet
surfaces in figure 6 obtained numerically are less than that of the unperturbed droplets.
This may be explained by the fact that the shapes of the droplets presented in figure
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F 9. SPL vs. the aspect ratio for 5 µl n-hexadecane droplets. The results for several reflector
distances L

r
are determined via equation (5.6) and interpolated with a polynomial fit (curve 2). There

are four measurement series corresponding to four values of L
r
. The point with the highest dB

e
value

for each measurement series refers to the same value of driving voltage amplitude U
!
. There are four

distinct points of this type corresponding to four values of L
r
. The data are compared with the

calibration data obtained by the BEM (curve 1).

6 are close to spheroids. The volume of a spheroid with an ellipse in the median cross-
section is equal to

%

$
πab#¯ %

$
πa$

!
, (5.9)

where a and b are the semi-axes of the ellipse, and a
!
is the unperturbed droplet radius

(a corresponds to the y-axis and b to the x-axis in figure 6). The length of the half-loop
of the generatrix of elliptic shape is given accurately enough by the left-hand side of

"

#
π[1±5(a­b)®(ab)"/#]!πa

!
, (5.10)

which should be compared with that of a circle (for the unperturbed droplet) πa
!
.

Under the condition (5.9), the inequality (5.10) reduces to

1±5(b−#­b)®b−"/#! 2, (5.11)

where b is rendered dimensionless by a
!
. The inequality (5.11) is satisfied for

1! b# 1±375. Therefore, it is satisfied for all ellipses with aspect ratios less than
b}a¯ b$¯ 1±375$¯ 2±6. The latter is the case for all the results presented in
figure 6, which explains why the corresponding lengths of the half-loop of the
generatrix are less than that of the unperturbed spherical droplet.

At higher levels of the driving voltage U
!
"U

!m
, where stable levitation of droplets

is achieved, the droplet is squeezed by the acoustic field, as seen in figure 6. It is worth
estimating the range of applicability of the sphere-based formulae (3.3), (3.4b), as well
as (5.3) for the levitation force and SPL under the conditions of growing droplet
deformation, i.e. increasing aspect ratio. To do this, using (5.1), (5.2) and (5.3) we
calculated the SPL in decibel dB

e
corresponding to several cases of droplet levitation

in the experiments, and plotted the measured SPL against the aspect ratio in figure 9
for 5 µl n-hexadecane droplets. Results for various reflector positions, and hence
various values of L

r
, are fitted with a dashed interpolation curve. It is clear that the
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F 10. SPL vs. the aspect ratio for 5 µl n-hexadecane droplets. The results for several reflector
distances L

r
are determined by measuring the displacement of the droplet cross-section centre from

the pressure node, calculating the displacement L from the pressure antinode and inserting L into
King’s formula (5.3). Curve 3 is a polynomial interpolation of the results. The results are compared
with the calibration curve 1 and curve 2, which is the polynomial interpolation of the results of using
equation (5.6). Curves 1 and 2 are also shown in figure 9.

aspect ratio is not a function of the reflector position and the driving voltage but rather
of A

!e
, which is a function of each of these two quantities from equation (2.6).

Also plotted in figure 9 is the theoretical calibration curve 1, which is in agreement
with the droplet images. The discrepancy observed between theory and experiment in
figure 9 can be attributed to the non-validity of King’s result at higher SPL due to
droplet deformation from the spherical state, consistent with the results shown in figure
5. Possibly also the ‘mechanical ’ assumption of equation (5.6) may lose validity at
higher amplitudes. This assumption was therefore tested by measuring directly the
motion of the piezo-transducer using an LDA focused onto the surface of the
transducer. The results showed linearity between the applied control voltage and the
transducer displacement over the entire working range of the device, thus confirming
equation (5.6).

Nevertheless, an alternative method of computing SPL, which does not rely on
equation (5.6), is also available. In this case the SPL is derived from the droplet
displacement, according to (5.1), (5.2) and (5.3). The result of this computation is
shown in figure 10, together with the two previous curves of figure 9. Curve 3 in figure
10 is still far from curve 1 at aspect ratios above 1±2. This discrepancy now may be
attributed solely to droplet deformation, which is not accounted for by King’s model.
The fact that King’s model fails for deformed droplets may be expected. However, the
range of approximate validity of King’s formula for slightly deformed droplets
deserves investigation, since it shows the range of validity of sound pressure calibration
methods using small droplets. From figure 10 we can conclude that the droplet
deformation cannot be neglected and King’s relationship for the levitation force is
inapplicable for aspect ratios much beyond 1±2.

With regard to the previous measurements based on the droplet displacement from
the pressure node, some consideration of the measurement accuracy is necessary. The
location of the pressure node is determined by finding the position of a levitated
polystyrene sphere. Due to its finite mass however, there exists a small bias error, which
has not been corrected for, i.e. the sphere will lie marginally below the pressure node.
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F 11. SPL vs. the aspect ratio for 5 µl n-hexadecane droplets for a reflector distance L
r
of about

1±63 cm. In contrast to figures 9 and 10 the SPL of data A and B is determined using water droplets
for calibration of SPL. All the results shown correspond to n-hexadecane. Data A are determined
using equation (5.6), whereas data B are calculated by measuring the displacement of the droplet
cross-section centre from the pressure node, calculating the displacement L from the pressure
antinode and inserting L into King’s formula (5.3). The results are compared with the calibration
curve 1 obtained by the BEM model.

Additionally, there is some uncertainty in the displacement measurement due to lateral
asymmetry, as discussed in reference to figure 6 and due to the calibration of the image
resolution. Although the magnitude of the error remains at approximately 3%, the
sinusoidal relation between displacement and the sound pressure amplitude (5.3)
results in larger absolute errors in A

!e
. The overall accuracy of the SPL measurement

is about ³0±09 dB if a very small and light spherical particle is used.
A further way to investigate the influence of the aspect ratio on the validity of King’s

result is to determine the SPL for water droplets. Water droplets show at the same SPL
a smaller aspect ratio than n-hexadecane droplets due to their higher surface tension.
The deviation of King’s results from the calibration curve 1 in figure 9 should be
smaller than the deviation of the results using n-hexadecane to determine the SPL.
Figure 11 shows the SPL as a function of the aspect ratio of n-hexadecane droplets for
a reflector distance L

r
of about 1±63 cm. The SPL was determined with water droplets

by finding the voltage of dropout and assuming a linear dependence between the sound
pressure amplitude and the driving voltage via (5±6) (data A and curve 4 in figure 11)
and by measuring directly the displacement from the pressure node (data B and curve
5 in figure 11). Water droplets were used for calibration of SPL only and all the results
of figure 11 correspond to n-hexadecane. The deviations of curves 4 and 5 from curve
1 are smaller than the deviations of curves 2 and 3 shown in figures 9 and 10. But still
the effect of the droplet deformation can be clearly seen. Due to the larger displacement
of water droplets from the pressure node, and hence the higher accuracy of the
displacement measurement, there is a good agreement between the results using
equation (5.6) and the results derived from the displacement measurements, even up to
higher levels of the SPL.

Figure 12 shows the SPL of n-hexadecane droplets of different volumes as a function
of the aspect ratio. The SPL is again determined using water droplets for its calibration.
Figure 12 unambiguously shows that the smaller the droplet size, the less the
discrepancy between the values of the SPL calculated with two different methods. This



88 A. L. Yarin, M. Pfaffenlehner and C. Tropea

4 ll (table 2)

164

163

162

161

160

1.2 1.6 2.0 2.4 2.8

4 ll
Exp.

Aspect ratio

dB
e

3 ll
2 ll

3 ll (table 2)

BEM

F 12. SPL vs. the aspect ratio for n-hexadecane droplets of different volumes for a reflector
distance L

r
of about 1±63 cm. The SPL was determined using water droplets (only for calibration) and

equation (5.6). The results are compared with the predictions of the BEM accounting for the droplet
deformation. The experimental data for 2, 3 and 4 µl droplets are shown by the open symbols and
interpolated by curves. The BEM results are shown by the corresponding solid symbols (also
interpolated by curves). Two points obtained by the BEM for 3 and 4 µl droplets and corresponding
to the data of table 2 are also shown.

results from the fact that smaller droplets are less deformed by the acoustic field.
Therefore, the sound pressure calibration method based on equation (5.6) becomes
more accurate.

6. Conclusions

A novel method of calculation of shapes of acoustically levitated droplets was
developed. It is based on a numerical solution of the boundary integral equation
describing the distribution of the acoustic radiation pressure over a droplet surface.
Combined with the overall and pointwise (over the droplet surface) force balance, it
allowed us to find both droplet shape and displacement from the pressure node.

An experimental set-up was constructed to measure droplet shapes and displace-
ments from the pressure node.

Comparison of the theoretical predictions for the droplet aspect ratio with the
corresponding experimental data obtained in the present paper allowed us to establish
a link between the sound pressure level (SPL) and the parameters of the levitator (its
driving voltage and reflector distance). Therefore the approach developed in the
present paper may serve as a new method of levitator calibration, valid for large drops.

Theoretical results for droplet shapes are in good agreement with the corresponding
experimental data obtained in the present paper and found in the literature. The
agreement between the theoretical and experimental data for the displacements of
droplet centres from the pressure node is somewhat poorer, which was attributed to a
less accurate measurement of droplet location.

The shapes of all the droplets in the present experiment were close to spheroidal.
Their displacements from the pressure node were approximately 10–30% of the
unperturbed droplet radius a

!
. For the experimental data of Trinh & Hsu (1986)

displacements more than 150% were found. These definitely cannot be ignored as
assumed in Lee et al. (1994).
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The approximate formula for the acoustic levitation force acting on a rigid sphere
proposed in Leung et al. (1981), Lierke et al. (1983) and Lierke (1996) was found to be
inaccurate outside its formal validity range (as it is frequently used). For
sound wavelengths comparable with the sphere radius (e.g. in the present case it was
Ω¯ka

!
¯ωa

!
}c

!
E 1) its predictions differ by 16–19±6% from the exact ones

obtained by King’s (1934) formula or numerically.
King’s (1934) formula for the acoustic levitation force acting on a sphere may be

approximately applied to levitated droplets (which are non-spherical due to the
squeezing action of the acoustic field) only up to the aspect ratios of about 1±2, which
shows the range of validity of probe calibration methods.
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in 1995 and 1996. This research was partially supported by the Technion V. P. R.
Elson}Shapiro Families Research Fund. The Deutsche Forschungsgemeinschaft
supplied partial funding for this work through grant Br 1046}3.

Appendix

The following functions are involved in calculations of the kernels in equations
(2.12) :

Y(M,A)¯
π

4 &
"

−"

cos²(ωA"/#}c
!
) [1®M sin#[(π}4) (γ­1)]]"/#´

²1®M sin#[(π}4) (γ­1)]´"/#
dγ, (A 1a)

F(M,A)¯
π

4 &
"

−"

sin²(ωA"/#}c
!
) [1®M sin#[(π}4) (γ­1)]]"/#´

²1®M sin#[(π}4) (γ­1)]´"/#
dγ, (A 1b)

where the radial and axial coordinates of points Q and P on the droplet (or particle)
generatrix (r, z) and (R,Z ), respectively, are used to obtain

A¯ (R­r)#­(Z®z)#, M¯
4Rr

(R­r)#­(Z®z)#
. (A 2a, b)

Differentiating (A 1), we find Y
M
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A
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A
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where the derivatives of M and A are calculated using (A 2).

With r, z, R, Z, L, and s rendered dimensionless by the unperturbed droplet radius
a
!
, the kernels in (2.12) take the form
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It may be shown that when point Q tends to point P, and point P does not belong
to the droplet (or particle) axis (R1 0), the kernels G

"
, H

#
, and M

"
are logarithmically

singular, whereas H
"
, G

#
and M

#
are regular. When point Q tends to point P located

at the droplet axis (R¯ 0), all the kernels are regular.
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